
SIAM REVIEW c© 2004 Society for Industrial and Applied Mathematics
Vol. 46, No. 2, pp. 000–000

LinkAnalysis:
Hubs andAuthorities on the
WorldWideWeb∗

Chris H. Q. Ding†

Hongyuan Zha‡

Xiaofeng He†

Parry Husbands†

Horst D. Simon†

Abstract. Ranking the tens of thousands of retrieved webpages for a user query on a Web search
engine such that the most informative webpages are on the top is a key information retrieval
technology. A popular ranking algorithm is the HITS algorithm of Kleinberg. It explores
the reinforcing interplay between authority and hub webpages on a particular topic by
taking into account the structure of the Web graphs formed by the hyperlinks between
the webpages. In this paper, we give a detailed analysis of the HITS algorithm through
a unique combination of probabilistic analysis and matrix algebra. In particular, we show
that to first-order approximation, the ranking given by the HITS algorithm is the same as
the ranking by counting inbound and outbound hyperlinks. Using Web graphs of different
sizes, we also provide experimental results to illustrate the analysis.
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1. Introduction. The rapidly growing World Wide Web now contains more than
three billion webpages of text, images, and other multimedia information. While this
vast amount of information has the potential to benefit all aspects of our society,
finding the relevant webpages to satisfy a user’s need for information still remains an
important and challenging task. Many commercial search engines have been developed
and used by people all over the world. However, the relevancy of webpages returned
by search engine is still lacking, and further research and development are needed to
make search engines more effective as a ubiquitous information-seeking tool.
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Fig. 1 Left: Hub webpage pi has many outbound hyperlinks. Right: Authority webpage pi has many
inbound hyperlinks.

A distinct feature of the Web is the proliferation of hyperlinks between webpages
which allow a user to surf from one webpage to another with a simple click. We can
model the Web as a directed graph with the webpages as the nodes and the hyperlinks
as the directed edges. This hyperlink graph contains useful information: if webpage pi
has a link pointing to webpage pj , it usually indicates that the creator of pi considers
pj to contain relevant information for pi. Such useful opinions and knowledge are
therefore registered in the form of hyperlinks. Exploring the information stored in
the link graphs to infer certain relationships is an emerging field of link analysis.
Recent introductory surveys of Web link analysis can be found in [18, 21].

A valuable and informative webpage is usually pointed to by a large number of
hyperlinks; i.e., it has a large indegree (see Figure 1). Such a webpage is called an
authority [22]. A webpage that points to many authority webpages is itself a useful
resource and is called a hub. A hub usually has a large outdegree. In the context of
literature citation, a hub is a review paper that cites many original papers, while an
authority is an original seminal paper cited by many papers.

The Hypertext Induced Topic Selection (HITS) algorithm of Kleinberg [22] im-
proves on the basic notions of hubs and authorities. HITS assigns importance scores
to hubs and authorities, and computes them in a mutually reinforcing way: a good
authority must be pointed to by several good hubs, while a good hub must point to
several good authorities. Further improvements and extensions of HITS were devel-
oped in [15, 6, 10, 24, 7, 11, 26, 1, 3]. The goal of this paper is to give a detailed
analysis of the HITS algorithm, focusing on the role of indegrees and outdegrees.

2. The HITS Algorithm. The HITS algorithm is applied to a set of webpages
generated from the search engine for a query. Specifically, a subset of the top-ranked
webpages together with their one-hop-away neighbors are used for analysis [22]. In
the HITS algorithm, each webpage pi in the set is assigned a hub score yi and an
authority score xi. The intuition is that a good authority is pointed to by many good
hubs and a good hub points to many good authorities. This mutually reinforcing
relationship is represented as,

x′i =
∑

j:eji∈E
yj , y′i =

∑
j:eij∈E

xj ; xi = x′i/||x′||, yi = y′i/||y′||,(1)

where || · || stands for L2 norm. Final hub and authority scores are obtained by
iteratively solving (1). By ordering webpages in decreasing order according to their
scores, one obtains the rankings of hubs and authorities.
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The set of webpages forms a directed graph G = (V,E), where webpage pi is a
node in V and hyperlink eij is an edge in E. The adjacency matrix L of the graph is
defined as Lij = 1 if eij ∈ E, and 0 otherwise. Authority scores on all n nodes form a
vector x = (x1, . . . , xn)T , and hub scores form a vector y = (y1, . . . , yn)T . Equation
(1) can be cast into

x′ = LTy, y′ = Lx; x = x′/||x||, y = y′/||y||.

Let x(t),y(t) denote hub and authority scores at the tth iteration. The iteration
processes to reach the final solutions are

cx(t+1) = LTLx(t), cy(t+1) = LLTy(t),(2)

starting with x(0) = y(0) = e ≡ (1, . . . , 1)T , where c is a normalization factor so
that ||x|| = ||y|| = 1. Since LTL determines the authority ranking, we call LTL the
authority matrix. Similarly, we call LLT the hub matrix. The final solution x∗,
y∗ consists of the respective principal eigenvectors of the symmetric positive definite
matrices LTL and LLT : LTLx∗ = λx∗ and LLTy∗ = λy∗, which also characterize the
singular value decomposition (SVD) [16] of L.

3. Authority and Co-citation, Hub and Co-reference. The hub and authority
matrices have interesting connections [22] to two important concepts, co-citation and
co-reference in the fields of citation analysis and bibliometrics, which are fundamental
metrics to characterize the similarity between two documents [27, 20]. Here we discuss
this relationship in further detail and emphasize the important role of indegrees and
outdegrees.

If two distinct webpages pi, pj are co-cited by many other webpages, as in Figure 2,
pi, pj are likely to be related in some way. Thus co-citation is a measure of similarity.
It is defined as the number of webpages that co-cite pi, pj . The co-citation between
pi, pj can be calculated as Cij =

∑
k LkiLkj = (LTL)ij . The self-citation Cii is not

defined and is usually set to Cii = 0. Also, Cij = Cji. The indegree of webpage pi
is given by di =

∑
k Lki =

∑
k LkiLki = (LTL)ii, since Lki = 0 or 1. Let D be the

diagonal matrix of indegrees, D = diag(d1, d2, . . . , dn), let the link structure of LTL
be

LTL = D + C.(3)

Thus the authority matrix is the sum of co-citation and indegree. One also sees that

max(0, di + dk − n) ≤ Cik ≤ min(di, dk).(4)

Thus Cik = 0 if di = 0 or dk = 0. If di = 0, the ith row of LTL contains all zeros.
From (2), its authority score must be zero.

As shown in Figure 2, the fact that two distinct webpages pi, pj co-reference many
other webpages indicates that pi, pj have a certain commonality. The co-reference
(bibliometric coupling) measures the similarity between webpages. Let R = (Rij) de-
note the co-reference, where Rij is defined to be the number of webpages co-referenced
by pi, pj and calculated as (see Figure 2) Rij =

∑
k LikLjk = (LLT )ij . The self-

reference Rii is not defined and is set to Rii = 0. The outdegree of node pi is
oi =

∑
k Lik =

∑
k LikLik = (LLT )ii. Let O = diag(o1, o2, . . . , on); we have

LLT = O +R.(5)
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Fig. 2 Left: Webpages pi, pj are co-cited by webpage pk. Right: Webpages pi, pj co-reference web-
page pk.

Thus the hub matrix is the sum of the co-reference and the outdegree. We also have
the inequality

max(0, oi + ok − n) ≤ Rik ≤ min(oi, ok).(6)

Clearly Rik = 0 if oi = 0 or ok = 0. If oi = 0, the ith row of LLT contains all zeros;
from (2), its hub score must be zero.

It is interesting to note the duality relationship between hubs and authorities,
and the duality between co-citations and co-references. This is similar to the duality
between documents and words in information retrieval (IR). The fact that hub and
authority scores are embedded in SVD resembles the latent semantic indexing in
IR [12, 5].

4. Probabilistic Analysis. We analyze the structures of the authority and hub
matrices in more detail. Equation (3) suggests an interesting and useful observation
on the relationship of co-citations and indegrees: in general, nodes with large indegrees
will have large co-citations with other nodes, simply because they have more in-links.
Conversely, large co-citations are directly related to the large indegrees of the nodes
involved.

These intuitions can be made more precise by assuming the Web graph as a fixed-
degree-sequence random graph and using probabilistic analysis on the expected value
of co-citation and co-reference. This is motivated by the result of Aiello, Chung, and
Lu [2], where it was proposed that the Web can be better characterized by a fixed-
degree-sequence random graph, in which node degrees {d1, . . . , dn} are first given and
edges are randomly distributed between nodes subject to constraints of node degrees.
We have the following proposition.
Proposition 1. For fixed-degree-sequence random graphs, the expected value of

co-citation is given by

〈Cik〉 = didk/(n− 1).(7)

This is consistent with (4).
Proof. We prove this relation assuming di ≥ dk. There are at most dk nonzero

terms in Cij =
∑
k LkiLkj , which is the inner product of ith and kth columns of

adjacency matrix L. Consider the case where the qth row in the kth column is 1. The
probability of the corresponding position in the ith column being 1 is P (Lqi = 1) =
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Cdi−1
n−2 /C

di
n−1 = di/(n − 1). Here Cdin−1 is the total number of possible patterns for di

1s in the ith column, and Cdi−1
n−2 is the total number of possible patterns given that

there is a 1 at row q. Thus 〈Cik〉 =
∑
q〈LqiLqk〉 =

∑dk
q 〈Lqi〉 = dk · P (Lqi = 1), and

we have (7).
From these analyses, we see that node i with large indegree di tends to have large

co-citations with other nodes. If di > dj , we have 〈Cik〉 > 〈Cjk〉 for all k, k �= i,
k �= j. Thus Cik is more likely to be larger than Cjk, but not necessarily true in every
case. We say that Cik > Cjk on average.

The same analysis can be applied to outdegree and co-reference for hub matrix
LLT . We have

〈Rik〉 = oiok/(n− 1).(8)

This is consistent with (6).
There are several other models for Web graph topology and indegree and out-

degree distributions, such as the webpage copying model [23] and the preferential
attachment model [4]. In those more complex models, the degree distributions evolve
dynamically; at any given time, however, the Web graph tends to be similar to the
fixed-degree-sequence random graph model and (7), (8) hold approximately.

5. Average Case Analysis. With the expected value of co-citations given in (7)
and the relationship (3) between authorities and co-citations, we can perform an
analysis for the average case in which the elements of the authority matrix are replaced
by their average values. In this average case, the final ranking scores of the HITS
algorithm can be obtained in closed form, providing much insight into the HITS
algorithm.

To prove the results of the average case requires the spectral decomposition of a
matrix which is the sum of a diagonal matrix and a rank-1 matrix: A ≡ D + ccT .
The decomposition for this type of matrix is given in Theorem 8.5.3 in Golub and
van Loan [16]. That theorem requires that the diagonal entries of D all be distinct.
However, in our case, many entries are identical. Thus we generalize Theorem 8.5.3
[16] to this more general case.
Theorem 2. Spectral decomposition of the n-by-n matrix A ≡ D + ccT . Let D

be a diagonal matrix of the block form

D = diag(τ1I1, . . . , τ�I�),(9)

where Ik, k = 1, . . . , �, is the identity matrix of size nk, τk’s are � distinct values

τ1 > τ2 > · · · > τ�,(10)

and the block sizes nk’s satisfy n1 + · · · + n� = n. Let c be a column vector of the
block form c = [cT1 , . . . , c

T
� ]
T , with ck being a column vector of size nk, and ck �= 0.

Then the eigenvalues of A ≡ D + ccT are given by

τ̂1 > τ1 = · · · = τ1︸ ︷︷ ︸
n1−1

> τ̂2 > τ2 = · · · = τ2︸ ︷︷ ︸
n2−1

> · · · > τ̂� > τ� = · · · = τ�︸ ︷︷ ︸
n�−1

.(11)

The eigenvector of A corresponding to the eigenvalue τ̂k is given by

(
cT1

τ̂k − τ1
,

cT2
τ̂k − τ2

, . . . ,
cT�

τ̂k − τ�

)T
.(12)
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The eigenvector corresponding to the eigenvalue τk is of the form

(0 · · · 0,uTk , 0 · · · 0)T ,(13)

where uk is an arbitrary vector of size nk satisfying cTk uk = 0.
Proof. Since ck �= 0, we can find exactly (nk − 1) mutually orthogonal uk’s

satisfying cTk uk = 0. The corresponding (nk − 1) vectors of the form in (13) form
an orthonormal basis for the invariant subspace of A with eigenvalue τk. In total, we
have (n1− 1)+ · · ·+(n�− 1) eigenvectors of this type with corresponding eigenvalues
τ1, . . . , τ� in (11).

Now consider the �-by-� matrix Â ≡ diag(τ1, τ2, . . . , τ�)+ ĉĉT with ĉ = (‖c1‖, . . .,
‖c�‖)T . It follows from (10) and Theorem 8.5.3 of [16] that Â has � distinct eigenvalues,
τ̂1, . . . , τ̂�, satisfying

τ̂1 > τ1 > τ̂2 > τ2 > · · · > τ̂� > τ�,

and the eigenvector of Â corresponding to τ̂k is given by(
‖c1‖
τ̂k − τ1

,
‖c2‖
τ̂k − τ2

, . . . ,
‖c�‖
τ̂k − τ�

)T
.(14)

For k = 1, . . . , �, let Uk be an orthonormal matrix (coordinate rotation) such that

UTk ck = ‖ck‖zk ≡ c̃k,

where zk = (1, 0 · · · 0)T . Define U = diag(U1, . . . , U�) and c̃ = [c̃T1 , . . . , c̃
T
� ]
T . Then

UTAU = D + c̃c̃T . By construction, the block structure of D + c̃c̃T matches that of
Â. Clearly, if (14) is the eigenvector of Â with the eigenvalue τ̂k, then(

‖c1‖zT1
τ̂k − τ1

,
‖c2‖zT2
τ̂k − τ2

, . . . ,
‖c�‖zT�
τ̂k − τ�

)T
(15)

is an eigenvector of D + c̃c̃T = UTAU with the same eigenvalue. To get the cor-
responding eigenvector of A, we multiply U from the left side of (15). Noting that
Ukzk = ck/‖ck‖, this gives the eigenvector of (12).

Suppose the largestm (m > 1) diagonal entries of D are distinct. Then them cor-
responding eigenvectors ofD+ccT are of the form in (12). LetD = diag(τ1, τ2, . . . , τn)
and c = (c1, c2, . . . , cn)T , where τi’s are in nonincreasing order, in contrast with the
block form of (9), (10). Let k ≤ m. The kth eigenvector of D+ccT can be written as

(
c1

τ̂k − τ1
,

c2
τ̂k − τ2

, . . . ,
cn

τ̂k − τn

)T
.(16)

This is the case used in the average case analysis of HITS below.
We now turn to the following main result of this paper.
Theorem 3. Given a fixed-degree-sequence random graph, assume that (a) the

largest m(m > 1) indegrees are distinct, d1 > · · · > dm > dm+1 ≥ dm+2 ≥ · · · ≥ dn,
and (b)

di + dj < n− 1 ∀ i, j.(17)

The authority matrix LTL for the average case has the largest m eigenvalues λi, i =
1, . . . ,m, with the interleave relation:

λ1 > h1 > λ2 > h2 > · · · > λm > hm,(18)
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and the corresponding eigenvectors

uk =
(

d1

λk − h1
,

d2

λk − h2
, . . . ,

dn
λk − hn

)T
, k = 1, . . . ,m.(19)

Here hi ≡ di − d2
i /(n− 1). Analogous results hold for hub matrix LLT .

Proof. Using (7), we have the average case authority matrix

〈LTL〉 = 〈D〉+ 〈C〉 = diag(h1, h2, . . . , hn) + ddT /(n− 1),

where d = (d1, d2, . . . , dn)T . Now 〈LTL〉 is the sum of a diagonal matrix and a rank-1
matrix. To apply Theorem 2, it requires that h1 > h2 > · · · > hm > hm+1 ≥ · · · ≥ hn.
This is satisfied, because we have

hi − hj = (di − dj)[1− (di + dj)/(n− 1)].

For any i < j, the second factor is positive because of (17). Since webpages are
indexed according to their indegrees, the first factor is positive for i ≤ m; otherwise it
is nonnegative. Thus the ordering requirement is satisfied. Equations (19), (18) now
follow from Theorem 2 directly.

Note that condition (b) of Theorem 3 (cf. (17)) is satisfied if di < (n−1)/2 for all
i, which holds for most webgraphs: the indegree of a node is less than half of the total
size. Also, indegrees of a Web graph typically follow a power-law distribution [9]:
di ∝ 1/i2. They drop off rapidly. The first few largest indegrees are usually distinct;
i.e., condition (a) of Theorem 3 is satisfied.

Given (7), one can also perform a first-order perturbation analysis and obtain
eigenvectors very similar to those in (19) (details omitted here).

These principal eigenvectors of 〈LTL〉 behave fairly regularly, as illustrated in
Figure 3. u1 is always positive. For u2, the first node is negative, turning positive
from the second node. For u3, the first two nodes are negative, turning positive from
the third node, and so on.

6. Properties of the HITSAlgorithm. Several interesting results follow directly
from Theorem 3:

(1) Webpage ordering. The authority ranking is, on average, identical to the
ranking according to webpage indegrees. To see this, we have the following corollary.
Corollary 4. Elements of the principal eigenvector u1 are nonincreasing, as-

suming webpages are indexed such that their indegrees are in nonincreasing order.
Proof. From Theorem 3, we have, for any i < j,

u1(i)− u1(j) =
di

λ1 − hi
− dj
λ1 − hj

=
(di − dj)[λ1 − didj/(n− 1)]

(λ1 − hi)(λ1 − hj)
≥ 0,

because λ1 − didj/(n− 1) > hi − didj/(n− 1) = di(1− (di + dj)/(n− 1)) > 0, using
(17), and (λ1 − hi)(λ1 − hj) is positive.

From this, we conclude that to the extent that the fixed-degree-sequence random
graph approximates the web, ranking webpages by their authority scores is the same
as ranking by their indegrees. Analogous results hold for hub ranking. These indicate
that the duality relationship embedded in mutual reinforcement between hubs and
authorities is manifested by their indegrees and outdegrees.

(2) Uniqueness. If d1 is larger than d2, then the principal eigenvector of LTL is
unique and is quite different from the second principal eigenvector (see Figure 3).
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Fig. 3 Eigenvectors of (19).

(3) Convergence. The convergence for HITS can be rather fast: (1) The starting
vector x(0) = (1, . . . , 1)T has large overlap with principal eigenvector u1, but little
overlap with other principal eigenvectors uk, k = 2, . . . ,m, because uk contains nega-
tive nodal values (see Figure 3). (2) In the iterations to compute u1, the convergence
rate depends on λ2/λ1 � h1/h2 � d1/d2 � (1/2)2 = 1/4, using (18) and the fact that
indegrees follow power-law distribution [9]: di ∝ 1/i2. Thus the iteration converges
rapidly. Typically 5–10 iterations are sufficient.

(4) Web communities. The HITS algorithm has been used to identify multiple
Web communities using different eigenvectors [22, 15]. The principal eigenvector
defines a dominant Web community. Each of the other principal eigenvectors uk
defines two communities, one with nonnegative values {i|uk(i) ≥ 0} and the other
with negative values {i|uk(i) < 0}.

From the pattern of eigenvectors in our solutions (see Figure 3), the positive
region of different eigenvectors overlaps substantially. Thus the communities of posi-
tive regions nest with each other, as do communities of negative regions. Therefore,
we believe that this method to identify multiple communities is less effective. This
difficulty is also noticed in practical applications [6]. A number of Web community
discovery algorithms are being developed, e.g., trawling to find bipartite cores [23],
network maximum flow [14], and graph-clustering [17]. One advantage of these meth-
ods is that weak communities (topics) can be separated from dominant communities
and thus identified. Without explicit community discovery, webpages of weak topics
are typically ranked low by HITS (and by indegree ranking) and are often missed.

7. Experimental Results.

7.1. Internet Archive. This dataset was supplied by the Internet Archive [19]
and was extracted from a crawl performed over 1998–1999. It has 4,906,214 web-
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Table 1 Authority ranking for Internet Archive.

HITS Indgree URL

1 4 www.yahoo.com
2 3 www.geocities.com
3 1 www.microsoft.com
4 6 members.aol.com
5 2 home.netscape.com
6 10 www.excite.com
7 11 www.lycos.com
8 9 members.tripod.com
9 15 ourworld.compuserve.com
10 5 www.netscape.com
11 20 www.cnn.com
12 28 www.webcom.com
13 33 sunsite.unc.edu
14 7 www.adobe.com
15 35 www.teleport.com
16 17 www.altavista.digital.com
17 25 www.w3.org
18 19 www.infoseek.com
19 18 www.angelfire.com
20 21 www.hotbot.com
... ... ......
111 13 www.linkexchange.com
137 14 ad.linkexchange.com
174 17 member.linkexchange.com

sites and represents a site-level graph of the Web. The principal eigenvectors were
obtained using PARPACK [25] on NERSC’s IBM SP computer. Table 1 lists the top
20 authorities, ranked by HITS (first column) and by indegree (second column).

In general, one sees that the HITS ranking and indegree rank are highly correlated,
as expected from our analytical results. For these reasons, we consider as normal those
webpages highly ranked by HITS that also have high indegree. There are two types
of webpages that deviate from this general pattern and warrant further examinations:
(a) those highly ranked authority webpages by HITS, but with relatively smaller
indegrees, and (b) those webpages with large indegrees, but ranked low by HITS.
These webpages would have been incorrectly ranked if we simply counted indegrees,
representing the net improvements brought by the HITS algorithm.

For type (b) webpages, we note that three websites, www.linkexchange.com, ad.
linkexchange.com, and member.linkexchange.com, are ranked high by indegree (rank
13, 14, 16 respectively). They are ranked low by HITS (rank 111, 137, 174 respec-
tively). All three sites have very large indegrees, but also very small outdegrees; they
are all sinks: many sites point to them, but they do not point to anywhere. The
mutually reinforcing nature of the HITS algorithm ranked them low, because there
are no good hubs pointing to them. These anomalies indicate the effectiveness of the
HITS algorithm.

As for type (a) webpages, we mention two websites: (1) sunsite.unc.edu, which
is ranked 13 in HITS, but is ranked 33 by indegree. This site holds many software
repositories, but few outbound links. Its higher HITS ranking is reasonable because
more top sites such as Microsoft point to it. (2) www.teleport.com, which is ranked
15 by HITS, but is ranked 35 by indegree. This site has a large number of outlinks,
and more top sites point to it.
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Table 2 Hub ranking for Internet Archive.

HITS Outdgree URL

1 4 www.yahoo.com.au
2 5 www.yahoo.co.uk
3 3 dir.yahoo.com
4 7 www.yahoo.com.sg
5 8 www.yahoo.ca
6 9 www2.aunz.yahoo.com
7 1 members.aol.com
8 2 www.geocities.com
9 6 members.tripod.com
10 10 ispc.yahoo.co.uk
11 11 y3.yahoo.ca
12 12 y4.yahoo.ca
13 13 www6.yahoo.co.uk
14 16 tv.yahoo.com.au
15 17 www.yahoo.co.nz
16 19 soccer.yahoo.com.au
17 18 www.yahoo.com.my
18 21 www.aunz.yahoo.com
19 20 203.103.130.22
20 23 206.222.66.43

Table 2 lists the top hubs, ranked by HITS (first column) and by outdegree (second
column). Here one see very high correlation between the HITS ranking and outdegree
ranking, indicating that our approximate analytical results are fairly accurate in this
case.

We note, however, that the distinction between hubs and authorities is sometimes
blurred. Good examples are members.aol.com, www.geocities.com, and similar sites,
which are ranked very high in both authority list and hub list. Although they are not
authoritative on any particular subject, careful content selection and organization
on these websites make them valuable, almost like authoritative figures. This also
happens in the bibliometrics domain, where some good survey papers/books (hubs)
become as valuable or important as the original seminal papers (authorities), because
these good surveys are written by authoritative people in the field, and they provide
the additional insights beyond the original seminal papers.

7.2. Open Directory Project. This dataset is about the topic running, which
contains a total of 13,152 webpages. This dataset is a subcategory of a larger category,
fitness, which is obtained from the Open Directory Project (ODP) www.dmoz.org.
Under each category of the ODP, there is a relatively focused topic. The data file from
the ODP contains the hierarchical structure of these webpages. We form the linkgraph
of subcategory running by extracting from the fitness linkgraph the document IDs of
those webpages under the running subcategory.

Table 3 lists the top 20 authorities, ranked either by HITS (first column) or by
indegree (second column). Here the correlation between the HITS ranking and the
indegree ranking is high. If we organize the ranking results in the first top 10, second
top 10, etc., as done by many internet search engines, the matches within the first
top 10 and the second top 10 are fairly close.

Table 4 lists the top hubs, ranked by HITS (first column) and by outdegree
(second column). For the hub ranking, correlation between the HITS ranking and the
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Table 3 Authority ranking for running.

HITS Indgree URL

1 2 www.runnersworld.com/
2 5 sunsite.unc.edu/drears/running/running.html
3 4 www.usatf.org/
4 1 www.coolrunning.com/
5 6 www.clark.net/pub/pribut/spsport.html
6 8 www.runningnetwork.com/
7 9 www.iaaf.org/
8 14 www.sirius.ca/running.html
9 12 www.wimsey.com/∼dblaikie/
10 15 www.kicksports.com/
11 7 www.nyrrc.org/
12 18 www.usaldr.org/
13 20 www.halhigdon.com/
14 25 www.ontherun.com/
15 10 www.runningroom.com/
16 23 www.webrunner.com/webrun/running/running.html
17 22 www.doitsports.com/
18 21 www.arfa.org/
19 19 www.adidas.com/
20 11 www.uta.fi/∼csmipe/sport/

Table 4 Hub ranking for running.

HITS Outdgree URL

1 3 www.fix.net/∼doogie/links.html
2 1 www.gbtc.org/whatelse.html
3 4 www.usateamsports.com/running.htm
4 15 home1.gte.net/gregtrrc/links.htm
5 17 www.afn.org/∼ftc/othlinks.html
6 19 www.grainnet.com/rdraces/websites.html
7 14 www.runner.org/links.htm
8 20 directory.netscape.com/Health/Fitness/Running
9 21 www.dmoz.org/Health/Fitness/Running/
10 20 directorysearch.mozilla.org/Health/Fitness/Running/
11 15 dmoz.org/Health/Fitness/Running
12 25 www.cajuncup.com/links.htm
13 11 www.rrm.com/sites.html
14 18 www.doitsports.com/guides/running.html
15 20 www.webcrawler.com/kids and family/hobbies/outdoors/running
16 20 magellan.mckinley.com/lifestyle/hobbies and recreation/outdoors/...
17 28 www.webfanatix.com/running resources.htm
18 28 www.webfanatix.com/ vti bin/shtml.exe/running resources.htm/map
19 25 www.isp.nwu.edu/∼brianw/running.html
20 23 www.geocities.com/HotSprings/Resort/5457/

indegree ranking is not as high as for the authority, but it is still apparent, especially
if we look at the top three.

8. Discussion. We analyze the HITS algorithm and obtained the solutions as-
suming that webgraphs are fixed degree sequence random graphs. Several important
characteristics of the HITS algorithm are explained. One result is that, on average,
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the HITS authority ranking is the same as the ranking by indegree. Experiments on
several web groups support this result.

Besides HITS, another popular ranking algorithm is PageRank [8], used in the
search engine Google. PageRank explores the linkgraph characteristics, but uses a
random surf model that can be reviewed as hyperlink weight normalization. (HITS
instead focuses on mutual reinforcement between authorities and hubs.) These main
features of HITS and PageRank are generalized and combined into a unified framework
in which one can show that ranking by PageRank is also highly correlated with ranking
by indegree [13].

The key motivation of mutual reinforcement in HITS is that a “good” hub must
point to several “good” authorities, while a “good” authority must be pointed to
by several “good” hubs. The key motivation of PageRank is that an “informative”
webpage must point to and be pointed to by other informative webpages. But for a
webpage to become “informative” in the first place, it must have the quality to attract
a certain amount of inbound links, or votes from other webpages. The dynamics of
the Web growth process [23, 4] has a snowball effect that gradually leads to the high
correlation between “informativeness” and indegree. Thus mutual reinforcement and
the high correlation between HITS ranking and indegree ranking describe different
aspects of the Web growth process: one is from a relationship point of view, the other
from a statistical point of view.
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